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Abstract - Vibration functions of a Timoshenko beam with arbitrary discontinuities are derived. Heaviside’s 
function is employed here to account for the discontinuity points in the beam so that the modal displacement 
and rotation can be described by a single function. Consequently the solution of vibration is significantly 
simplified. The application of present model to smart structure lead-zirconate-titanate (PZT) actuatorand 
damage detection are presented.  
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1. INTRODUCTION 
Structure maintenances are gaining much more attention 

in the field of engineering because more and more old 
machines and buildings are eroded or damaged with time 
going. Inspection of these damages inside the structural 
components is playing the main role in judging how serious 
the damages are and whether it needs to be repaired 
immediately. A lot of efforts have been made to find 
methodsfor early detecting and locating the damages. Most of 
the damages are presented as cracks and the cracks can reduce 
the stiffness of structure, therefore the dynamics 
characteristics, such as natural frequency and mode shapes, 
related to structural stiffness will change correspondingly. 

In the last three decades numerous damage detection 
methods based on dynamic response are developed [1], [2], [3], 
[4]. Diamarogonas [5] gave a review of the state of the art of 
vibration based methods to detect the cracks in the structures. 
Diamarogonas modeled the crack as a massless rotational 
spring and its equivalent stiffness was computed as a function 
of crack depth by employing fracture mechanics methods. 
Subsequently, many researchers build various molds and 
methods to determine the size and position of one crack in a 
beam [6],[7],[8],[9]. Later Ostachowicz and Krawczuck[10] 
studied on the dynamic behaviors of a beam with two cracks. 

Double crack beams are investigated intensively by analytical, 
numerical and experimental methods [11], [12]. Shifrin and 
Ruotolo [13] proposed a method for evaluating natural 
frequencies of such a beam that requires calculation of an “n+2” 
determination instead of a “4n+4” to study the natural 
frequencies of a beam with an arbitrary number of cracks. A 
more simplified method was proposed by Khiemand Lien [14] 
for evaluating the natural frequencies of beams with an 
arbitrary number of cracks.  

All the above studies are concentrated on the analysis of 
the effect of transverse cracks. There are also other 
discontinuities such as intermediate resilient support, internal 
hinge or concentrated forces, etc. in the field of civil and 
mechanical engineering. Different discontinuities can complex 
the analysis of the vibration significantly. The approximated 
methods are employed to solve the high order eigenvalue 
equations [15], [16], [17]. Recently a general solution to 
account for arbitrary combinations of discontinuities and 
boundary conditions are proposed by Wang and Qiao[18]. A 
general function technique developed by Yavari [19] is 
employed here to achieve only one general displacement 
function to describe the whole beam. Heaviside and Dirac 
delta functions are used to account for various discontinuity 
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conditions. But the beam model used in Wang and Qiao[18] 
paper is Euler-Bernoulli beam formulation, which do not 
consider the effects of shear deformation and rotary inertia. 
Especially, for short beams, such effects cannot be neglected. 

In this paper the general solution of modal displacement 
of a Timoshenko beam with arbitrary discontinuities and 
boundary conditions is derived. The solution for the vibration 
of a Timoshenko beam is more complicated than that of 
Euler-Bernoulli beam [20]. To verify the accuracy of the model, 
two applications are presented and compared with Wang and 
Qiao[18]’s solution and finite element method results. 

2.THERORETICAL  
2.1 Vibration of Timoshenko beam with one 

discontinuity point 
 

 

 
As shown in Fig.1, a Timoshenko under general boundary 

conditions with one discontinuity at point x1, which separate 
the whole beam into portion I and II. The discontinuity term at 
this point can be the deflection, slope, curvature, the third 
order derivative of the deflection, or any combination of above 
four terms. The equations of motion for each segment:  
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Where ( )txw ,1 and ( )txw ,2  are the transverse deflections of 
the segments I and II, respectively; ( )tx,1ψ  and ( )tx,2ψ  are 

the rotations of the segments I and II, respectively; E and I are 
the Young’s modulus and moment inertia of the beam, 
respectively; G and k shear modulus and numerical factor 
depending on the shape of the cross section; ρ and A are the 

density and cross-section area of the beam, respectively. 
The deflection and rotation of the whole beam are 

expressed in term of a single function, respectively.  
( ) ( ) ( )txwtxwtxw ,,, 12 −=∆                          (5) 

( ) ( ) ( ) ( )11 ,,, xxHtxwtxwtxw −∆+=    (6) 
( ) ( ) ( )txtxtx ,,, 12 ψψψ −=∆                   (7) 

( ) ( ) ( ) ( )11 ,,, xxHtxtxtx −∆+= ψψψ                      (8) 

Where ( )txw ,  and ( )tx,ψ are the deflection and rotation 

functions of the whole beam, which are a generalized function 
with discontinuities at location x1. ( )1xxH −  is the Heaviside 

function which jumps from zero to unit at location x1. 
Differentiating both sides of (5-8) with respect to x, we 

have 
( ) ( ) ( ) ( ) ( ) ( )1111 ,,',',' xxtxwxxHtxwtxwtxw −∆+−∆+= δ (9)

( ) ( ) ( ) ( ) ( ) ( ) ( ) (11111 ',,','','','' xtxwxxtxwxxHtxwtxwtxw −∆+−∆+−∆+= δδ

 (10) 
( ) ( ) ( ) ( ) ( ) ( )1111 ,,',',' xxtxxxHtxtxtx −∆+−∆+= δψψψψ       

 (11) 
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where the prime dot over ( )2,1=iwi is the derivative of the 
transverse deflection and rotation with respect to x. ( )1xx −δ is 

Dirac delta function.  
Combine equation (1) and (2), (3) and (4): 
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where kGAB =  and EID =  

Rearranging equations (13) and (14): 
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Substitute (5) – (12) to (15) and (16) 
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Equations (17) and (18) give the equations of motion of 

the Timoshenko beam with discontinuities in term of general 
equation ( )txw ,  and ( )tx,ψ .Considering free vibration or 

harmonic forced vibration, (17) and (18) can be solved through 
variable separation method.  

Let                                                    
( ) ( ) ( )wtxWtxw sin, =      (19) 

( ) ( ) ( )wtxtx sin, Ψ=ψ          (20) 
where ( )xW  and ( )xΨ are the modal displacement and 

rotation of the beam. Substituting (19) and (20) into (17) and 
(18), we have 
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Applying Laplace transform to (21) and (22) 
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( )sW  and ( )sΨ  can be easily found by (23) and (24): 
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The modal displacements ( )xW  and ( )xΨ as shown in 

(29) and (30) can be obtained by applying inverse Laplace 
transform on both (27) and (28). 
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3. VERIFICATIONS 
3.1 Vibration of cantilever beam attached withPZT 

actuator 
 

 

 
Actuator and sensors are used to analyze the natural 

vibrations of a beam and assess the extent of the damage by 
directly measuring the voltage output generated by the 
strained film [21], [22]. As shown in Fig.2, a PZT patch is 
attached to a cantilever beam as an actuator. Two concentrated 
moments are applied to the cantilever beam at the end of PZT 
patch due to a proper voltage applied to the PZT patch. In the 
case of harmonic vibration, the modal displacement and 
rotation of the cantilever beam is, 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )
EI
M

xS
EI
M

xSxSWxSxW 0
171

0
171311 0'00' −+Ψ+Ψ−=
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( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )
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M

xS
EI
M

xSxSWxSx 0
271

0
272321 0'00' −+Ψ+Ψ−=Ψ

       (32) 

Where 0M is the moment applied by the PZT actuator; x1 is 

the location of the left end of the PZT. In the expression of
( )xS171 , the x1 is replaced by x1 +l, where l is the length of the 

actuator. There are two unknowns: ( ) ( )00' Ψ−W  and ( )0'Ψ , 

which can be solved by the boundary conditions listed below, 
( ) ( ) 0' =Ψ− LLW , ( ) 0' =Ψ L    (33) 

The length of the beam is 1m with Young’s modulus

28 /108.4 mN× and density 3/1200 mkg .The cross section is 

rectangular with the dimensions 202.002.0 m× . Assume
srad /606.14=ω , mNM ⋅= 10 and Ll 02.0= .The displacement 

using Timoshenko beam is shown in the Table 1 and Fig. 3.  
 

TABLE 1  
DISPLACEMENT IN TIMOSHENKO BEAM 

Distance 
from  
left end 

Displacement 
(x = 0.1) 

Displacement 
(x = 0.4) 

Displacement 
(x = 0.8) 

0 -0.001728618 -0.001831169 -0.000086841 
0.02 -0.001728733 -0.001834844 -0.000116655 
0.04 -0.001847281 -0.001846723 -0.000196009 
0.06 -0.001836841 -0.001939437 -0.000209749 
0.08 -0.001944094 -0.002030995 -0.000240444 
0.1 -0.001944213 -0.002291767 -0.000265752 
0.12 -0.002042716 -0.002432858 -0.000347808 
0.14 -0.002106311 -0.002681411 -0.000350101 
0.16 -0.002193479 -0.002745829 -0.000364456 
0.18 -0.002370951 -0.002853734 -0.000369311 
0.2 -0.002462647 -0.002960287 -0.000427507 
0.22 -0.002477219 -0.00298279 -0.000433643 
0.24 -0.002697277 -0.003214136 -0.000440417 
0.26 -0.002778564 -0.00326539 -0.000440897 
0.28 -0.002880433 -0.003491343 -0.000443319 
0.3 -0.00312659 -0.00360458 -0.000479664 
0.32 -0.003245795 -0.003616963 -0.000481192 
0.34 -0.003449514 -0.003730766 -0.000487013 
0.36 -0.00356308 -0.00377457 -0.000500896 
0.38 -0.003759847 -0.003817943 -0.000513241 
0.4 -0.003950094 -0.003856863 -0.000627546 
0.42 -0.004154247 -0.003930693 -0.000700271 
0.44 -0.004419111 -0.003942923 -0.000700697 
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0.46 -0.004478018 -0.004041766 -0.000725462 
0.48 -0.004877966 -0.004155032 -0.000798712 
0.5 -0.004945434 -0.004184333 -0.000871751 
0.52 -0.005273612 -0.004212172 -0.000901169 
0.54 -0.005400918 -0.004310148 -0.000920744 
0.56 -0.005673076 -0.004430299 -0.001004700 
0.58 -0.005905917 -0.004571329 -0.001047801 
0.6 -0.006083988 -0.004856644 -0.001100074 
0.62 -0.00648443 -0.004974472 -0.001215156 
0.64 -0.006619548 -0.005180038 -0.001223043 
0.66 -0.00692104 -0.005294973 -0.001313301 
0.68 -0.007123157 -0.005409084 -0.001361130 
0.7 -0.007459306 -0.005517539 -0.001390862 
0.72 -0.007670351 -0.005684769 -0.001398307 
0.74 -0.008045315 -0.005729308 -0.001399341 
0.76 -0.008313599 -0.005931795 -0.001511568 
0.78 -0.008542906 -0.005950009 -0.001521970 
0.8 -0.008884953 -0.006042841 -0.001539966 
0.82 -0.009147155 -0.006206757 -0.001556834 
0.84 -0.009399559 -0.006279877 -0.001583500 
0.86 -0.0097322 -0.006456891 -0.001602953 
0.88 -0.009951337 -0.006560958 -0.001619193 
0.9 -0.01026936 -0.006698024 -0.001625730 
0.92 -0.010526905 -0.007012349 -0.001708189 
0.94 -0.010706729 -0.007128905 -0.001892570 
0.96 -0.011093611 -0.007245989 -0.001928162 
0.98 -0.011306151 -0.007359801 -0.001931410 
1 -0.011663925 -0.007498321 -0.001934827 

 

 
 

4.CONCLUSION 
In this paper, vibration functions of a Timoshenko beam 

with arbitrary discontinuities and boundary conditions are 
derived. Heaviside’s function is employed here to account for 
the discontinuity points in the beam so that the modal 
displacement and rotation can be described by a single 
function. Consequently the solution of vibration is 
significantly simplified. Various discontinuity and boundary 
conditions regarding to Timoshenko beam are discussed. 

The application of present model to smart structure and 
damage detection are presented and compared with 
Euler-Bernoulli beam model and FEA. It turns out that present 
solution can give much better solution than Euler-Bernoulli 
beam, especially for the secondary and third natural frequency. 
Additionally, the deeper the crack, the more significant 
difference of frequencies of Timoshenko beam and 
Euler-Bernoulli beam. 
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